CISNET is a consortium of NCI-sponsored investigators who use statistical/simulation modeling to examine the impact of prevention, screening, and treatment on cancer incidence and mortality. These models then can project future trends and help determine optimal cancer control strategies. Established in 2000, CISNET comprises six cancer site groups: breast, cervical, prostate, colorectal, lung, and esophageal.

Approaches to Modeling

- **Flexible broad-based disease models** — These models incorporate the natural history of disease processes and overlay the full range of cancer control interventions.
- **Multicohort modeling** — This type of modeling captures a range of birth cohorts and the changing risk factor profiles, screening behavior, and treatments used by each cohort as it ages.
- **Making the results of modeling efforts more transparent** — This is achieved through:
 - Comparative modeling — Independent modeling efforts often yield disparate results that are difficult to reconcile. A comparative modeling approach explores differences between models in a systematic way. In “base case” collaborations, a set of common population inputs is used across all models (e.g., dissemination patterns of screening and treatment, mortality from noncancer causes), and common sets of intermediate and final outputs are developed. Results then are compared across models.
 - Standardized model documentation — Model profiles are standardized descriptions that facilitate the comparison of models and their results. Users can read documentation about a single model or side-by-side descriptions that contrast how models address different components of the process. Journal articles seldom contain extensive model descriptions; links from publications to model profiles provide a more complete model description. Learn more about model documentation at http://cisnet.cancer.gov/profiles.

Working with Researchers and Policymakers

The CISNET infrastructure serves as a tool to inform evidence-based policy decisions, cancer control planning, and research priority setting. Examples include:

- **Colorectal Cancer Mortality Projections Web Site** — This interactive site allows users to examine future trends in colorectal cancer mortality and potential impacts of cancer control efforts. The site also features descriptions of and links to the Healthy People 2010 goals relevant to colorectal cancer. To learn more about this project, visit http://cisnet.cancer.gov/projections/colorectal.
• Collaborating with the U.S. Preventive Services Task Force (USPSTF) (Zauber et al., 2008; Zauber et al., 2015; Mandelblatt et al., 2009; de Koning et al., 2013; de Koning et al., 2014; Mandelblatt et al., 2015)—CISNET models have served as a resource for USPSTF evidence review panels as they developed or revised screening guidelines for breast, colorectal, and lung cancers.

• Centers for Medicare and Medicaid Services (CMS) Reports on the Cost-Effectiveness of Immunochemical Fecal Occult Blood Tests (iFOBT) and DNA Stool Testing—These reports to the CMS represent a joint effort with CISNET to analyze the cost-effectiveness of new screening tests for colorectal cancer and help inform CMS coverage decisions. Visit http://cisnet.cancer.gov/colorectal/highlights/cms_report.html to learn more about these reports.

• Impact of Mammography and Adjuvant Therapy on the Decline in U.S. Breast Cancer Mortality: 1975–2000 (Berry et al., 2005 and CISNET Breast Cancer Collaborators, 2006) — These reports represent a joint effort among seven CISNET breast cancer groups that used a comparative modeling approach to determine the contributions of mammography and adjuvant therapy to the decline in breast cancer mortality in the United States. The group used population data to describe the dissemination and usage patterns of mammography and adjuvant therapy that occurred in the United States over time.

 Sample graphs: Estimated joint distribution of the reduction in the rate of death from breast cancer among U.S. women 30–79 years of age attributed to adjuvant treatment and to screening mammography (Berry et al., 2005).

The usage patterns then were coupled with seven independent modelers’ syntheses of all available information on the benefits of these advances. Although the benefits of adjuvant therapy were more settled, controversy regarding the benefits of mammography screening persisted due to uneven results and continuing criticism of the controlled trials on which the mortality benefits had been based. The authors make the case that each factor accounted for one-half of the historic 24 percent decrease in mortality that was observed between 1990 and 2000. Typically, results based on observational data are validated using controlled trials. However, in this case, observational data (combined in a novel way using seven different models) helped to confirm mammography benefits when controlled trial results alone could not settle the debate.

The breast cancer team has added key evidence to address the controversial questions about mammography and shows the potential role of statistical modeling of observational data in public health policy/decision making.

• Lead Time and Overdiagnosis in Prostate-Specific Antigen (PSA) Screening: Importance of Methods and Context (Draisma et al., 2009) — Overdiagnosis and lead time are two important yet unobservable quantities that serve as significant measures of the potential harms and benefits associated with PSA screening. Prior to this study, published estimates of these two quantities varied widely. This report represents an effort by the CISNET prostate cancer groups to use three independently developed mathematical models of prostate cancer progression (the Erasmus Medical Center “MISCAN” model, the Fred Hutchinson Cancer Research Center [FHCRC] model, and the University of Michigan model) to determine estimates of overdiagnosis and lead time under standardized definitions and conditions. Prior to this effort, the MISCAN model was calibrated to data from the Netherlands section of the European Randomized Study of Screening for Prostate Cancer (ERSPC), where screening is practiced quite differently than in the United States. (continued on next page)
The results from this model varied significantly from the two other models, which were calibrated to U.S. PSA screening patterns and prostate cancer incidence data. With the original Rotterdam ERSPC data, the MISCAN model estimated that the mean lead time was 7.9 years, and the overdiagnosis frequency was 66 percent of screen-detected cancers. When this model was calibrated to U.S. SEER data, the mean lead time was 6.9 years, and the overdiagnosis frequency was 42 percent. These latter estimates were much closer to the estimates produced by the FHCRC and University of Michigan models, which estimated mean lead times ranging from 5.4–6.9 years, and overdiagnosis frequencies ranging from 23–42 percent. This led the authors to conclude that both the definitions and populations used to estimate lead time and overdiagnosis can have a significant effect on study results and should be specified clearly prior to conducting research.

Selected Publications

For a complete CISNET publication listing, see http://cisnet.cancer.gov/publications.
Collaborative Opportunities

CISNET invites inquiries from outside groups regarding collaborations on cancer control issues amenable to modeling. Visit http://cisnet.cancer.gov/working/contact.html to get more information on collaborating. CISNET initiated a series of Webinars to encourage discussion with colleagues in the fields of advocacy, public policy, legislative affairs, cancer control planning, and clinical science on the potential of CISNET’s decision support tools to guide evidence-based policies/guidelines and cancer control planning. To view these webinars, visit http://cisnet.cancer.gov/webinars/crc_02282008.html

For more information, contact Dr. Feuer, the overall NCI Project Scientist for CISNET.

Eric Feuer, PhD
CISNET Overall Project Scientist
Surveillance Research Program, Division of Cancer Control & Population Sciences
Telephone: 240-276-6772
E-mail: rf41u@nih.gov

In addition to an overall NCI Project Scientist, there are Project Scientists for each cancer site:

Eric Feuer, PhD
NCI Project Scientist for CISNET Lung
Surveillance Research Program, Division of Cancer Control & Population Sciences
Telephone: 240-276-6772
E-mail: rf41u@nih.gov

Paul Doria-Rose, DVM, PhD
NCI Project Scientist for CISNET Cervical and Colorectal
Healthcare Delivery Research Program, Division of Cancer Control & Population Sciences
Telephone: 240-276-6904
E-mail: doriarop@mail.nih.gov

Brandy Heckman-Stoddard, PhD, MPH
NCI Project Scientist for CISNET Breast
Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention
Telephone: 240-276-7048
heckmanbm@mail.nih.gov

Angela Mariotto, PhD
NCI Project Scientist for CISNET Prostate
Surveillance Research Program, Division of Cancer Control & Population Sciences
Telephone: 240-276-6698
E-mail: mariotta@mail.nih.gov

Ellen Richmond, RN, MS, AOCN
NCI Project Scientist for CISNET Esophagus Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention
Telephone: 240-276-7043
E-mail: richmone@mail.nih.gov