AAPC for the Joinpoint Connect-the-Dots Scenario

Michelle Dunn and Joe Zou

When longitudinal data are first collected, there are not enough observations to accurately fit a regression model, much less a joinpoint model. However, presenting the data in an informative way is important. In the Cancer Trends Progress Report, when there are six or fewer observations, a “Connect-the-Dots” plot is presented. In the “Connect-the-Dots” scenario, rather than fitting a stochastic model, a deterministic one is fit which interpolates a line segment between each observation. In other words, for observations \(r_1, r_2, \ldots, r_k, r_{k+1} \) at times \(t_1, t_2, \ldots, t_k, t_{k+1} \) respectively, \(k \) line segments are fit to the data on a log scale, where the first line segment begins at \((t_1, \log(r_1))\) and ends at \((t_2, \log(r_2))\), the second one connects \((t_2, \log(r_2))\) and \((t_3, \log(r_3))\), etc.

The observations themselves are realizations of random variables, often from complicated surveys. Using complex survey methodology, an estimate of the variance of the random variable is computed. The observation \(r_i \) is a realization of the random variable \(R_i \), a rate which is assumed to be approximately normal,

\[
R_i \sim \text{Normal}(\alpha_i, \gamma_i^2). \tag{1}
\]

where \(\sim \) means “is approximately distributed.” An estimate of the mean, \(\hat{\alpha}_i \), is given, and the variance \(\hat{\gamma}_i^2 \) is assumed to be known.

Because the observations are not necessarily equally spaced, the lengths of the line segments will vary. Let weights \(w_i \) be proportional to the length of segment \(i \), where

\[
\sum_{i=1}^{k} w_i = 1.
\]

Then by definition, the Average Annual Percentage Change (AAPC) is

\[
\mu = \exp \left(\sum_{i=1}^{k} w_i \beta_i \right) - 1 \tag{2}
\]

where \(\beta_i \) is the slope for a line segment \(i \). In the “connect-the-dots” scenario, the slope for a segment is

\[
\beta_i = \frac{\log(R_{i+1}) - \log(R_i)}{t_{i+1} - t_i}. \tag{3}
\]
A standard way to find a 95% confidence interval for \(\mu \) is to find its distribution and then to remove 2.5% from each tail. Instead, to be consistent with the way that confidence intervals are found in joinpoint-based AAPCs, a confidence interval will be found for

\[
\sum_{i=1}^{k} w_i \beta_i.
\]

(4)

The confidence interval endpoints \((L, U) \) will then be transformed by \(\exp(L) - 1 \) and \(\exp(U) - 1 \) respectively.

Using (1) and the Delta Method, the following approximation is derived

\[
\log(R_i) \sim \text{Normal}(\log(\alpha_i), \gamma_i^2/\alpha_i^2)
\]

which together with (3) produces

\[
\beta_i \sim \text{Normal} \quad \frac{\log(\alpha_{i+1}) - \log(\alpha_i)}{t_{i+1} - t_i}, \quad \frac{\gamma_i^2/\alpha_i^2 + \gamma_i^2/\alpha_i^2}{(t_{i+1} - t_i)^2}.
\]

To find the distribution of (4), first note that by substituting the definition of \(\beta_i \) from (3) and \(w_i = (t_{i+1} - t_i)/(t_{k+1} - t_1) \),

\[
\sum_{i=1}^{k} w_i \beta_i = \frac{\log(R_{k+1}) - \log(R_1)}{t_{k+1} - t_1}
\]

and thus

\[
\sum_{i=1}^{k} w_i \beta_i \sim \text{Normal} \quad \frac{\log(\alpha_{k+1}) - \log(\alpha_1)}{t_{k+1} - t_1}, \quad \frac{\gamma_{k+1}^2/\alpha_{k+1}^2 + \gamma_1^2/\alpha_1^2}{(t_{k+1} - t_1)^2}.
\]

Using this distribution, a 95% confidence interval for \(\sum_{i=1}^{k} w_i \beta_i \) is

\[
\left(\frac{\log(\alpha_{k+1}) - \log(\alpha_1)}{t_{k+1} - t_1} - 1.96 \sqrt{\frac{\gamma_{k+1}^2/\alpha_{k+1}^2 + \gamma_1^2/\alpha_1^2}{(t_{k+1} - t_1)^2}}, \frac{\log(\alpha_{k+1}) - \log(\alpha_1)}{t_{k+1} - t_1} + 1.96 \sqrt{\frac{\gamma_{k+1}^2/\alpha_{k+1}^2 + \gamma_1^2/\alpha_1^2}{(t_{k+1} - t_1)^2}} \right).
\]

The lower and upper endpoints of this confidence interval are transformed using equation (2) to produce a 95% confidence interval for \(\mu \).