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A.1.  Joinpoint regression 

Suppose that we observe  (𝑥𝑖,𝑦𝑖) for i=1,2,…,n, and consider a piece-wise linear regression 

model, 𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝛿1(𝑥𝑖 − 𝜏1)+ + ⋯+ 𝛿𝑘(𝑥𝑖 − 𝜏𝜅)+ + 𝜀𝑖,  where 𝑎+ = max(𝑎, 0). 

There are  unknown joinpoints,  𝜏1, … , 𝜏𝑘,  where two consecutive linear segments are connected 

and the number of joinpoints, 𝜅, is also assumed to be unknown.  Kim et al. (2000) used the least 

squares method to estimate the 𝛽’s and 𝜏’s at each given value of k, and proposed to use the 

permutation test to estimate the number of joinpoints, 𝜅.  We start with testing the null 

hypothesis of 𝑘0 joinpoints versus the alternative hypothesis of 𝑘1 joinpoints, and then increase 

𝑘0 to 𝑘0 + 1  if the null hypothesis is rejected and decrease 𝑘1 to 𝑘1 − 1  otherwise.  We conduct 

such sequential testing until we test the null hypothesis of k joinpoints versus the alternative 

hypothesis of k+1 joinpoints for some k (𝑘0 ≤ 𝑘 ≤ 𝑘1).  In order to control the overall over-

fitting probability under 𝛼, the significance level of the test at each step is adjusted appropriately.  

A simple Bonferroni type adjustment was used in earlier versions of Joinpoint, and a 

modification was made to improve the power as proposed in Kim et al. (2009).   A traditional F-

type test statistic was used  to test the null hypothesis of 𝑘0 joinpoints versus the alternative 

hypothesis of 𝑘1 joinpoints, but the fact that it does not have a well-known distribution, even 

asymptotically, motivated us to use a permutation procedure to estimate its P-value. 

Regarding the fitting of a piecewise linear regression model at a given k, we first estimate the 

regression parameters for given locations of joinpoints and then search for the joinpoint locations 

that minimize the residual sum of squares. To estimate the unknown joinpoints, we used  the grid 

search proposed by Lerman (1980) and  implemented the Hudson’s algorithm (Hudson (1966)) 

1 This report provides technical details for methods used in:  
Zhu L, Pickle LW, Ghosh K, Naishadham D, Portier K, Chen HS, Kim HJ, Zou Z, 
Cucinelli J, Kohler B, Edwards BK, King J, Feuer EJ, Jemal A. Predicting US- and state-
level cancer counts for the current calendar year: Part II: evaluation of spatiotemporal 
projection methods for incidence. Cancer 2012 Feb 15;118(4):1100-9. 
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in later versions to accommodate a continuous fitting where estimated joinpoints can be 

anywhere in the data range. Strengths of the Hudson’s algorithm include that it provides more 

accurate estimates of the model parameters and is computationally more efficient than fine  grid 

searches, but it is slower than the annual grid search and there were some technical issues to be 

taken care of.  For further details on the Hudson’s algorithm, refer to Kim et al. (2008) and Yu et 

al. (2007).  The weighted least squares fitting can be made to handle heteroscedastic errors as 

well as autocorrelated errors, and Joinpoint provide several options for the weight specification. 

Inferences following the least squares fitting were conducted by using asymptotic normal 

distributions for the slope parameters and the likelihood method for the joinpoints.  In order to 

provide accurate standard error estimates of the slope parameters, Joinpoint incorporated 

suggestions made in literature: (i) to estimate the standard errors based on non-constrained model 

and (ii) to delete offending data points observations.  See Kim et al. (2008) for further details. In 

later versions of Joinpoint, we also implemented the point and interval estimates of the annual 

percent change (APC) and the average annual percent change (AAPC). 

The problem of selecting the number of joinpoints is similar to the classical problem of 

regression model selection, and we pursued both the hypothesis testing and information criterion 

approaches. The permutation test procedure described above is conservative in nature but has 

been used as a default with a goal to find a most parsimonious model. It is time consuming since 

a resampling distribution is generated to estimate the P-value of the test, and we implemented 

sequential stopping methods to improve its computational efficiency. See Fay et al. (2007) for 

further details.  Another method of regression model selection is an information criterion based 

method such as Bayesian Information Criterion (BIC) or Akaike Information Criterion.  We 

implemented the BIC as a faster alternative to the permutation procedure, where the model with 

k to minimize BIC(k)=ln �𝑅𝑆𝑆𝑘
𝑛
� + 2𝑘 ln𝑛

𝑛
 is selected as a final model.  The simulation results 

summarized in Kim et al. (2009) indicate that the BIC tends to over-fit the model and the 

performance of the BIC is close to that of the permutation procedure with the over-fitting 

probability controlled to be under 0.15.  Recently, Zhang and Siegmund (2007) proposed a 

modified BIC (MBIC) to select the number of mean changes in a sequence of random variables, 

and provided theoretical and empirical evidences to support its superiority over other selection 
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methods.  Their idea was applied to the joinpoint regression setting, and the modified BIC for a 

model with k-joinpoints was derived as an asymptotic approximation of the Bayes factor: 

MBIC(k) = BIC(k)+ ln |𝑋𝑘
′ (𝜏�)𝑋𝑘(𝜏�)|
𝑛

− 2
𝑛

 𝑙𝑛Γ �𝑛−𝑘−3
2

� − 𝑘+3
𝑛

ln�𝑅𝑆𝑆(𝑘)�, 

Where RSS(k) denote the residual sum of squares for the model with k-joinpoints,  Γ(𝑧) is the 

gamma function, Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡∞
0  𝑑𝑡,   and 

𝑋𝑘(𝜏̂) = �
1 𝑥1 (𝑥1 − 𝜏̂1)+
⋮ ⋮ ⋮
1 𝑥𝑛 (𝑥𝑛 − 𝜏̂1)+

  
… (𝑥1 − 𝜏̂𝑘)+
⋱ ⋮
… (𝑥𝑛 − 𝜏̂𝑘)+

�  . 

Compared to the BIC, MBIC assigns a harsher penalty for a larger value of k, and it is expected 

to be more conservative than the BIC is.  Our preliminary simulations indicate that the MBIC 

performs very well for situations with moderate or large effect sizes, but its performance is even 

worse than that of the permutation test when effect sizes are very small.  

A.2 NordPred  
 

Time trends in incidence and mortality have also been modeled using the age-period-cohort 

(APC) model [Holford, 1983].  The data used consists of a set of age-specific counts tabulated 

for several periods of time.  Interval widths for age and period are typically assumed to be equal, 

in this study, 18 five-year age categories [age group i:  i=1,…,I=18] and seven or three five-year 

periods [period j:  j=1,…,J=7 (or J=3)] are used depending on the analysis.  Cohorts are defined 

by subtracting subject age from the period that contains the date of the occurrence of the event of 

interest.  So, using five-year age categories and five-year periods, individuals in the age category 

60-65 who died from say lung cancer during the period 1999-2003 would belong to the 1934-

1943 birth cohort.  Birth cohorts will have overlap. Using standard notation, the kth cohort is 

identified by k= j + I – i. 

The typical APC model assumes additive age, period and cohort effects on log rates with Poisson 

errors. Let Yijk be the mortality (or incidence) rate for the ith age group, jth period and kth cohort. 

http://surveillance.cancer.gov/reports/ 3 of 18



Then Yijk is assumed to have a Poisson distribution with mean (and standard deviation), μijk , that 

is related to age, period and cohort through a linear link function (2.1). 

𝑮(𝝁𝒊𝒋𝒌) = 𝜶𝒊 + 𝝅𝒋 + 𝝉𝒌                                 (𝟐.𝟏) 

Where μ is the expected rate, αi is the effect for the ith age group, πj is the effect for the jth period 

and τk is the effect for the kth cohort, and G() is a monotonic function that links the expected rate 

to a linear function of the age, group and period effects.  The usual constraints,  ∑ 𝛼𝑖 =𝑖

∑ 𝜋𝑗 = ∑ 𝜏𝑘𝑘𝑗 , are applied.  Additional constraints are needed to account for the linear 

relationship among the subscripts k, j and i.  This interdependency is accounted for in the 

generalized inverse used to estimate the parameters and in all formal statistical tests involving 

these parameters.  

A common modification of the traditional APC model is to structure the linear function to 

incorporate a common drift parameter to facilitate predictions [Clayton and Schifflers, 1987].  

With this model, the log link function becomes. 

𝑮(𝝁𝒊𝒋𝒌) = 𝜶𝒊 + 𝜹𝒋 + 𝝉𝒌 + 𝑫 ∙ 𝒋                              (𝟐.𝟐) 

In this formulation, the regression coefficient D is called the common drift and the δj measures 

the deviations from linearity in the period factor.   

A log link (G()=log()) leads to exponential growth in the rate over time which typically 

overestimates true future values.  To level off this exponential growth, Engeland et al. [1993] 

and Møller, et al. (2003) examined a number of modifications to the common drift form of the 

APC model and recommended the following power link function. 

𝜇𝑖𝑗𝑘 = (𝛼𝑖 + 𝛿𝑗 + 𝜏𝑘 + 𝑫 ∙ 𝒋)5             (2.3)  

This model is referred to in this paper as the “NordPred” model because it has been used 

extensively to predict cancer mortality and incidence rates for the Nordic countries.   

Model parameters are estimated using standard generalized linear model methodology as 

implemented in the glm() function in R (version 2.12.2, 2011).  Input consists of mortality or 

incidence counts along with age, period and cohort indicator variables, and counts are assumed 
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to follow a Poisson distribution.  Only consecutive age groups with count summed over all 

periods greater than 45 are included in the estimation routine.  The 45 count threshold is needed 

to ensure that the glm() procedure has sufficient data to ensure acceptable parameter estimates.  

When the total count is less than 45, the average count over the previous two time periods are 

used as the estimated count.  Typically this included counts for the youngest age categories 

(latest cohorts) where few deaths (or incidence) are observed and hence how these are estimated 

has little impact on the overall predictability of the model.  Population counts are also used by 

the estimation procedure to compute expected rates from counts and for prediction.   

Prediction is performed in two steps.  First the fitted generalized linear model is used to predict 

rates for two periods beyond the last period of actual data.  This step requires that population 

counts for these two projection periods are available. Next, predicted rates are used with linear 

interpolation to provide estimated rates for predicting three and four years beyond the last year of 

data. These rates are then converted to counts using estimated individual year population values 

also computed using linear interpolation from the five-year period estimates. 

Future predictions assume cohort and age effects equal to the last estimated values. The fitted 

model assumes a linear trend for period drift. The experience of Møller, et al. (2003) indicates 

that future predictions are best if the effect of drift is assumed to fade over time.  For this 

analysis, predictions for the first five-year time period beyond the last period of data used only 

0.25 of 𝐷� and the second five-year time period prediction used no drift.  Period deviations (δj) 

for future predictions are assumed zero. 

A.3  State space method 

A.3.1  Model specification 

As before, we assume that the observed mortality (or incidence) count at time t is given by dt, 

which is subject to uncertainty due to measurement error. This is quantified using  

 dt=αt+εt,      t=1,…,  

where αt is the trend and εt is the measurement error with mean 0 and variance Vt. We call this 

the measurement equation.  
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Next, we model the year-to-year variation in the trend in the form of a local-quadratic model. 

This is achieved by the following set of equations:  





 

αt=αt−1+βt−1+γt−1+η1t;

βt= βt−1+2γt−1+η2t;

γt= γt−1+η3t;
,      t=1,…  

Here βt and γt can be interpreted as the local slope and acceleration respectively of the trend of 

the mortality series and ηit are the random transition errors, assumed to be serially uncorrelated 

with mean 0. We call this the transition equation.  

We can rewrite the measurement and transition equations in the following compact notation  

dt=FtΘt+εt, 

Θt=GtΘt−1+ηt, 

where Θt=(αt,βt,γt)' is called the state vector, Ft=(1,0,0)'  is called the measurement 

matrix,  

Gt= 










 
111
012
001

 

is called the transition matrix and ηt=(η1t,η2t,η3t)' is the vector of transition errors assumed to 

have covariance Wt.  

We assume that the measurement errors εt and transition errors ηt are uncorrelated with each 

other and with themselves at different points in time. To complete the model specification, we 

assume that the initial state Θ0 has mean a0 and covariance C0. This formulation is called a 

state-space model. For more details on state space models, see Harvey (1989), Harvey (1993) 

and West and Harrison (1997). 

A.3.2  Estimation and prediction 

When Ft, Gt, Vt Wt, a0 and C0 are completely known, the Kalman Filter algorithm (Kalman, 

1960, Kalman and Bucy, 1961, Meinhold and Singpurwalla, 1983, Harvey, 1989, 1993) can be 
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applied recursively to calculate optimal estimator of the state vector at time t. Once the end of the 

series is reached, further application of the Kalman Filter allows one to obtain optimal 

predictions of the future observations. The algorithm is briefly described below. 

A.3.2.1  Kalman Filter 

Let φt be the optimal estimator of the state vector Θt based on d1, …, dt  and Ct be the 

corresponding p×p MSE matrix (for our case, p=3). We then have  

 Ct=E[(Θt−φt)(Θt−φt)']. 

Suppose we are at time t and φt and Ct are available. Then, based on data up to and including 

time t, the optimal estimator of Θt+1 is  

 ϱt+1|t=Gt+1φt, (3.1) 

and the updated MSE matrix for ϱt+1|t is  

 Ct+1|t=Gt+1CtGt+1'+Wt+1. (3.2) 

Equations (3.1) and (3.2) are called the prediction equations. The corresponding estimator of 

dt+1, called the predicted value, yt+1|t is then  

 yt+1|t=Ft+1ϱt+1|t. 

Let the prediction error of dt+1 based on data upto t (also called the innovation vector) be 

denoted by νt+1. Then,  

 νt+1=dt+1−yt+1|t=Ft+1(Θt+1−ϱt+1|t)+εt+1, 

and its MSE is given by  

 Kt+1=Ft+1Ct+1|tFt+1'+Vt+1. 
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Once a new observation dt+1 becomes available, the estimator ϱt+1|t of the state vector Θt+1 

and its corresponding MSE can be updated. The updating equations, known as the KF updating 

equations, are given by  

 φt+1=ϱt+1|t+Ct+1|tFt+1'K
−1
t+1(dt+1−Ft+1ϱt+1|t) 

and  

 Ct+1=Ct+1|t−Ct+1|tFt+1'K
−1
t+1Ft+1Ct+1|t. 

Starting with initial conditions φ0 and C0, the above equations are used recursively for 

t=0,1,…,T−1 to finally get φT, which contains all the information for predicting future values of 

dt, t>T. The l-step-ahead estimator of ΘT+l, given information upto T is then  

 ϱT+l|T=GT+lϱT+l−1|T,      l=1,2,….  

with ϱT|T=φT. The associated MSE matrix is given by  

 CT+l|T=GT+lCT+l−1|TGT+l'+WT+l,      l=1,2,…  

with CT|T=CT. 

The l-step-ahead predictor of dt+l given d1,…,dT  is  

 yT+l|T=FT+lϱT+l|T 

with its prediction MSE being  

 MSE(yT+l|T)=FT+lCt+l|TFT+l|T'+VT+l. 

A.3.2.2  Estimation of a0, C0, Vt and Wt 

Due to lack of any prior information on Θ0, we use a diffuse prior by setting the mean 

a0=(α0,β0,γ0)' of the initial state to be the solution of  
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



 

d1
d2
d3

= 










 
111
124
139

 





 

α0
β0
γ0

 

and taking 𝐶0 = 10000𝐼3 (see Harvey, 1993). We assume that the two covariance matrices are 

2 2 2 2 3time invariant, given by V =σ  and W =diag(σ ,σ ,σ ). Writing y =Δ d , and γ(k) being the t ε t 1 2 3 t t

autocovariance of order k for the yt series, it can be shown that  

 







 

γ(0)=20σ
2
ε+6σ

2
1+2σ

2
2+2σ

2
3;

γ(1)=−15σ
2
ε−4σ

2
1−σ

2
2+σ

2
3;

γ(2)=6σ
2
ε+σ

2
1;

γ(3)=−σ
2
ε;

γ(k)=0;      k≥4

. (3.3) 

We use Equation (3.3) to estimate the entries of V and W, and refer to this method as the method 

of moments. If any estimates turned out to be negative, they were replaced by 0. We then use the 

Kalman Filter algorithm described earlier to obtain the predictions zT+4=yT+4|T.  

A.3.2.3  Tuning 

It was observed that for certain cancer sites, this method sometimes resulted in wide year-to-year 

fluctuations in the predicted counts. To remedy this condition, we used a two-step method of 

obtaining the predictions. First we estimated the V and W matrices using method of moments as 

before. We then introduced non-negative “tuning parameters” κV and κW, which are multipliers 

of the V and W matrices respectively. Defining  

 et+4(κV,κW)=zt+4−dt+4 

as the 4-year-ahead prediction error for dt+4 when using κV and κW as the tuning parameters, the 

sum of squares of 4-year-ahead prediction errors is then given by  
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 SSPE(κV,κW)= ∑
t=7

34
 e

2
t+4(κV,κW). 

The tuning parameters are chosen so that the above quantity is minimized. The optimal values of 

κV and κW were obtained using the Nelder-Mead algorithm (Nelder and Mead, 1965), 

implemented in R through the routine optim. In the second step, the optimal (κV,κW) values in 

conjunction with the estimated V and W matrices were used to obtain the desired 4-year-ahead 

prediction of dT+4 using the Kalman Filter.  

The whole procedure is implemented in R (R Development Core Team, 2008). More details 

of the State Space method and Kalman Filter algorithm are available in Ghosh et al. (2007). 

A.4  Bayes State Space method 

A.4.1  Model specification 

Consider a yearly time series of mortality (or incidence) counts given by (dt)
T
t=1. At each time 

point t, we model the observed counts using a Poisson distribution, namely  

 dt|Θt 
indep
∼  Poisson(Θt),      t=1,….  (4.1) 

Equation (4.1) is called the measurement equation, since it is used to capture the uncertainty in 

the observations or the measurements. The mean of the Poisson distribution at time t is assumed 

to be related to an unknown p-dimensional vector of regression coefficients μt, through the link 

function  

Θt=exp(Ft'μt),  

where Ft is a completely known p-dimensional vector, possibly changing with time. The vector 

of regression coefficients μt is called the state vector, since it can be used to determine the 

“average state” of the time series at t. 

Next, we model the year-to-year variation of the time series through the following relation 

between state vectors at consecutive time points  
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μt=Gtμt−1+εt,      t=1,…, (4.2) 

where Gt is a completely known p×p transition matrix that is possibly varying with time and εt is 

a random error satisfying  

εt 
iid
∼  Np(0,Σ),      t=1,….  

Equation (4.2) is called the transition equation and combined with Equation (1), define a 

dynamic generalized linear model (DGLM). 

A.4.2  Model fitting and prediction 

We use the Bayesian paradigm to fit the postulated model. The likelihood function is 

proportional to  

 
1

|Σ|T/2exp[ ∑
t=1

T
 {dtFt'μt− 

(μt−Gtμt−1)'Σ−1(μt−Gtμt−1)

2 −eFt'μt}]. 

The Bayesian model specification is completed by specifying the prior distributions of the initial 

state μ0 and the transition covariance matrix Σ. We assume  

μ0∼Np(m0,C0),  

where m0,C0 are completely known. Furthermore, we assume that the p-dimensional covariance 

matrix Σ is diagonal, with elements  

σ
2
i  

iid
∼  IG(aσ,bσ),      i=1,…,p,  

where IG(a,b) denotes inverse-gamma distribution with parameters (a,b) whose density is given 

by  

f(x)= 
1

Γ(a) ba xa+1e−1/(bx),      x>0. 

We assume aσ and bσ are completely known. 
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We use a combination of various Markov chain Monte Carlo techniques such as the Gibbs 

sampler and Metropolis-Hastings sampler to estimate the posterior distribution of the model 

parameters. In particular, using “⋯” to denote “the rest”, we have  

μ0|⋯∼Np(m
*
0,C

*
0),  

where  

C
*
0=(G1'Σ−1G1+C

−1
0 )−1, 

and  

m
*
0=C

*
0(G1'Σ−1μ1+C

−1
0 m0). 

Similarly, we have  

σ
2
i |⋯∼IG(aσ+ 

T
2,{b

−1
σ + 

1
2 ∑

t=1

T
 [(μt−Gtμt−1)]

2
i }−1), i=1,…,p.  

The remaining state vectors (μt)
T
t=1 are updated using Metropolis-Hastings steps with the 

multivariate normal random walk sampler, whereby the covariance of the proposal distribution is 

tuned according to the algorithm of Roberts and Rosenthal (2001) to attain optimal acceptance 

rates. Fitting of similar models is described in Schmidt and Pereira (2011). For more on Bayesian 

DGLM, see West and Harrison (1997). 

At each iteration of the Gibbs sampler, once we obtained an updated value of μT, we first ran 

the transition equation (2) four additional steps to obtain an updated value of μT+4. This was 

then used in the measurement equation (1) to obtain an updated value of dT+4. Denoting the 

updated value of dT+4 in the mth iteration by d
(m)
T+4, the estimated value of dT+4 was obtained as  

zT+4= 
1
M ∑

m=1

M
 d

(m)
T+4, 

where M is the total number of iterations.  
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For our case, we used p=1 with Ft=1 and Gt=1 (this is a local level model, or a local-

polynomial model of first order). We also used aσ=3 and bσ=2, reflecting lack of information on 

the transition variance. Furthermore, we chose C0=10 and m0=0 to reflect lack of information on 

the initial state. 

The Gibbs sampler was run for 200,000 iterations with the first half discarded as burn-in (for 

some sites however, it was necessary to run the sampler for 400,000 iterations). Convergence 

was assessed visually using traceplots of the sampled parameters. On convergence, the remaining 

iterations were used for posterior calculations, with a thinning of every 100. The code was 

written in R (R Development Core Team, 2008). 

A.5. Summary Metrics for Comparing Estimates 

Assume 𝜃�𝑠𝑚 is the predicted mortality or incidence count for specific scenario s, s=1,…,S, via 

method m, m=1,…,M, and that 𝜃𝑠 is the true observed count.  Let 𝜌𝑠𝑚 represent the rank of the 

squared deviation ��𝜃�𝑠𝑚 − 𝜃𝑠�
2
� for the estimate of scenario s by method m among all M 

methods.  Thus 1 ≤ 𝜌𝑠𝑚 ≤ 𝑀, where two methods that produce the same estimate are assigned 

an average rank value.  The following statistics were computed to support comparison among the 

different estimation methods. 

Average Absolute Relative Deviation:  𝐴𝐴𝑅𝐷𝑚 = 1
𝑆
∑ �𝜃�𝑠𝑚−𝜃𝑠�

𝜃𝑠+.5
𝑆
𝑠=1  

Maximum Absolute Relative Deviation:  𝑀𝐴𝑅𝐷𝑚 = max ��𝜃
�𝑠𝑚−𝜃𝑠�
𝜃𝑠+.5

�  

Mean Relative Sums of Squares:  𝑀𝑅𝑆𝑆𝐷𝑚 = 1
𝑆
∑ �𝜃�𝑠𝑚−𝜃𝑠�

2

𝜃𝑠+.5
𝑆
𝑠=1   

Root Mean Square Error:  𝑅𝑀𝑆𝐸𝑚 = �1
𝑆
∑ �𝜃�𝑠𝑚 − 𝜃𝑠�

2𝑆
𝑠=1  

Normalized Root Mean Square Error:  𝑁𝑅𝑀𝑆𝐸𝑚 = ��1
𝑆
∑ �𝜃�𝑠𝑚 − 𝜃𝑠�

2𝑆
𝑠=1 � �1

𝑆
∑ 𝜃𝑠𝑆
𝑠=1 ��   

Average Rank of the Relative Sums of Squares:  𝐴𝑅𝑅𝑆𝑆𝑚 = 1
𝑆
∑ 𝜌�𝑠𝑚𝑆
𝑠=1  
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The AARD is interpreted as the average percent deviation from the true value relative to the true 

value.  This measure attempts to take into account the relative differences in observed mortality 

or incidence counts among different cancers and or geographic areas as we attempt to assess the 

extent to which the estimates deviate from observed.  The MARD is a measure of the worst the 

deviation from observed might be.  The MRSSD is similar to the AARD only deviations are 

squared resulting in applying higher weights to larger deviations in the average.  The RMSE is 

an estimate of variability of estimates about the true value.  The NRMSE is the MSE expressed 

as a fraction of the mean. 

The ARRSS is the average rank of deviations among the methods.  A method which has the 

smallest squared deviations among all methods will have rank of one.  If on average the rank for 

this method is close to one then we would conclude that this method is “best” in the sense that it 

consistently beats all other methods in getting close to the observed value. A method with 

smallest average rank is assumed to produce closer estimates to the true value than any of 

method most often, although there may be situations where it is not always the very best.  

A.6 List of covariate in incidence prediction 
 Variable name Definition Data 

source 
Original 
source 

Geographic definition   
 fipscnty fips state/county code  (5 digits) Census Census 
 state state fips code (2 digits) Census Census 
 Census Division 9 regions of the country Census Census 
 inseer 1 if this is a county in the NCI SEER 

program, 0 if NPCR only 
SeerStat SEER 

Medical facilities    
 MDratio # physicians per 1000 population  ARF AMA 

Physician 
Masterfile 

 hosp # hospitals per 1000 pop  ARF AMA 
Physician 
Masterfile 

Ethnicity/origin    
 pcthisp % of Hispanic origin SeerStat Census 
 pctBlk % of total pop who are black SeerStat Census 
 pctAIAN % of total pop who are American Indian or 

Alaskan Natives 
SeerStat Census 

 pctAPI % of total pop who are Asian/Pacific 
Islanders 

SeerStat Census 

 pctforeign % of total pop who are foreign born SeerStat Census 
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 Variable name Definition Data 
source 

Original 
source 

 pctlangisol % of households in which no person ages 
14+ speaks only English and who does 
not speak English very well 

Census Census 

Household characteristics   
 pctfemhh % households headed by female  ARF Census 
 crowded % of persons living with > 1 person per 

room on average  
SeerStat Census 

Urban/rural indicators   
 pcturban % urban pop SeerStat Census 
 popdens # persons/square mile SeerStat Census 
Socioeconomic status   
 pctpoor % living below federal poverty line  SeerStat Census 
 pctlt9ed % adults over 25 with < 9 years of 

education  
SeerStat Census 

 pctcoled % adults over 25 with 4+ years of college 
education  

SeerStat Census 

 unemploy % unemployed  SeerStat Census 
 pctwhtcl % adults employed in white collar jobs  SeerStat Census 
Cancer screening    
 pctmam % women ages 50-64 who had a 

mammogram in past 2 years  
BRFSS BRFSS 

 pctpap % women ages 20+ who had a Pap smear 
in past 5 years  

BRFSS BRFSS 

 pctpsa % of men ages 40+ who ever had a PSA 
test 

BRFSS BRFSS 

Health insurance    
 pctnoins % of persons ages 18+ who do not have a 

health plan or health insurance  
BRFSS BRFSS 

Lifestyle    
 pctsmkmale % of males ages 18+ who ever smoked 

cigarettes  
BRFSS BRFSS 

 pctsmkfem % of females ages 18+ who ever smoked 
cigarettes  

BRFSS BRFSS 

 pctbmi % of persons ages 18+ who are >120% of 
the median body mass index  

BRFSS BRFSS 

 overweightOrObese_2007_both % of persons ages 18+ with a body mass 
index of 25+ 

BRFSS BRFSS 

 pctvigorous % of persons ages 18+ who met 
guidelines for vigorous exercise in 2001-3 

BRFSS BRFSS 

Miscellaneous    
 landarea  land area in square miles Census Census 

geography 
files 

 mortrate mortality rate SEER NCHS 
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