Surveillance Research Program, NCI, Technical Report #2018-01

Detecting outliers with sample size adjustment in the SEER Box Plot Outlier Tool

Huann-Sheng Chen¹, Benmei Liu¹ and James Cucinelli²

- 1. Statistical Methodology and Applications Branch, Division of Cancer Control and Population Sciences, National Cancer Institute
- 2. Information Management Services Inc.

Introduction

The SEER Box Plot Outlier Tool (BOT) is developed to detect outliers in the Surveillance, Epidemiology, and End Results (SEER) database for 118 variables (either at person level or tumor case level) across all of the SEER cancer registries and multiple diagnosis years from 1988 to the most recent year (2015). Table 1 provides the full list of variables that are currently implemented in the SEER BOT.

For each variable included in the SEER BOT, for each specific value or group of values of interest, three analyses are performed: 1) Compute percentage of a specific value (or group of values) out of all records in each registry with all years combined, and then compare the percentages across the SEER registries and detect outlier registries if any; 2) Compute percentage of a specific value (or group of values) out of all records in each registry and then compare the percentages across the SEER registries and detect outlier registries in each registry using the most recent (2015) data only, and then compare the percentages across the SEER registries and detect outlier registries if any; 3) Compute percentage of a specific value (or group of values) out of all records in each diagnosis year within an individual cancer registry, and then compare the percentages across the diagnosis years and detect outlier years if any.

The SEER Box Plot Outlier Tool (BOT) is integrated in the SEER Quality Assurance Program. Each year, new data submissions are examined using the BOT and any outliers are investigated.

This brief technical report describes the statistical procedure used in SEER BOT to detect outlier registries or diagnosis years in the SEER database.

Statistical Methods

For analysis 1, assume y is a variable of interest (e.g., Race 1), y_{ikt} denotes the individual value of y for person or case i ($i = 1, ..., n_{kt}$) in cancer registry k (k = 1, ..., K) at diagnosis year t (t = 1988, ..., 2015), where K is the total number of cancer registries included in the SEER database. Let \tilde{y}_{ikt} denote the binary recode for a specific value (or groups of values) of interest. Without loss of generosity, we use the specific value of interest as those "unknowns" for illustration below. That is, $\tilde{y}_{ikt} = \begin{cases} 1, & if \ y_{ijt} = "Unknown" \\ 0, & otherwise \end{cases}$

Assume each \tilde{y}_{ikt} follows a Bernoulli distribution with probability of p to get value of 1 and 1 - p to get value of 0. Let $\tilde{y}_k = \sum_{t=1988}^{2015} \sum_{i=1}^{n_{kt}} \tilde{y}_{ikt}$, $n_k = \sum_{t=1988}^{2015} n_{kt}$.

Then, for each k,

$$\tilde{y}_k \sim Binomial(n_k, p).$$

Let $\hat{p}_k = \frac{\tilde{y}_k}{n_k}$, then \hat{p}_k 's are estimates of p, and

$$E(\hat{p}_k) = p, \ Var(\hat{p}_k) = \frac{p(1-p)}{n_k}.$$

The confidence interval for \hat{p}_k is:

$$\hat{p}_k \pm 1.96 \sqrt{\frac{\hat{p}_k(1-\hat{p}_k)}{n_k}}$$

It is noted that with the same \hat{p} , if the sample size n is smaller, the standard deviation is larger. Therefore, there is more variation for a smaller registry, and it is more likely become outliers just by chance. To take this factor into account, we use box-plot of the point estimates and the confidence intervals associated with each point estimates together to identify real outliers.

We use the estimate \hat{p}_k , k = 1, ..., K, i.e., the registry level percentage of a specific value (or groups of values) for a specific variable of interest, to draw box-plot (Figure 1).

To determine whether the outside values are really outliers, the confidence interval of each \hat{p}_k is compared to the box boundaries calculated from the inter-quartile range (IQRs), the width of the box and whisker plot. $IQR = Q_3 - Q_1$.

The lower boundary is defined as Lower=max(0, $Q_1 - 1.5 * IQR$), and the upper boundary is defined as $Q_3 + 1.5 * IQR$. So the box boundary range is: (max(0, $Q_1 - 1.5 * IQR$), $Q_3 + 1.5 * IQR$).

For any \hat{p}_k , if its confidence interval falls completely outside of the boundary range, then it is considered as an outlier. Values with confidence intervals overlap or partially overlap with the box boundary range cannot be considered as outliers. If the confidence interval falls completely outside of the boundary range formed using (max(0, $Q_1 - 3*IQR$), $Q_3 + 3*IQR$), then the \hat{p}_k is considered as an extreme outlier.

Same outlier detection procedure is used for all the three analyses, all the variables and all the specific values (or group of values) of interest built in the SEER BOT. The most recent years of data will be updated when new years of SEER data is available.

Table 1: SEER Variables Currently included in the SEER BO	T
---	---

Age at Dx	Grade
Age Recode with < 1 Year Olds	Histologic Type ICD-O-3
Ambiguous Terminology DX	ICCC Site Recode ICD-O-3 / WHO 2008
AYA Site Recode / WHO 2008	ICD Revision Number
Behavior ICD-O-3	ICD-O-3 Conversion Flag
Behavior Recode for Analysis	IHS Link
Cause of Death	Laterality
	Lymphoma Subtype Recode / WHO
Census Tract 2000	2008
Census Tract Certainty 2000	Marital Status at DX
Computed Ethnicity	Month of Birth
County at DX	Month of Conclusive DX
CS Extension	Month of Dx
CS Lymph Nodes	Month of Multiple Tumors
CS Lymph Nodes Eval	Mult Tum Rpt as One Prim
CS Mets at Dx	Multiplicity Counter
CS Mets Eval	NAPIIA Derived Pacific Islander Origin
CS Site-Specific Factor 1	NHIA Derived Hispanic Origin
	Origin Recode NHIA (Hispanic, Non-
CS Site-Specific Factor 2	Hisp)
CS Site-Specific Factor 3	Override Site / Type
CS Site-Specific Factor 4	Place of Birth
CS Site-Specific Factor 5	Primary Payer at DX
CS Site-Specific Factor 6	Primary Site
CS Site-Specific Factor 7	Race 1
CS Site-Specific Factor 8	Race 2
CS Site-Specific Factor 9	Race 3
CS Site-Specific Factor 10	Race 4
CS Site-Specific Factor 11	Race 5
CS Site-Specific Factor 12	Race Recode (W, B, AI, API)
CS Site-Specific Factor 13	Race Recode (White, Black, Other)
CS Site-Specific Factor 14	Reason For No Surgery
CS Site-Specific Factor 15	Regional Nodes Examined
CS Site-Specific Factor 16	Regional Nodes Positive
CS Site-Specific Factor 17	RX Summ BRM
CS Site-Specific Factor 18	RX Summ Chemo
CS Site-Specific Factor 19	RX Summ Hormone
CS Site-Specific Factor 20	RX Summ Other
CS Site-Specific Factor 21	RX Summ Radiation
CS Site-Specific Factor 22	RX Summ Scope Reg LN Sur

CS Site-Specific Factor 23	RX Summ Surg / Rad Seq
CS Site-Specific Factor 24	RX Summ Surg Oth Reg/Dis
CS Site-Specific Factor 25	RX Summ Surg Prim Site
CS Size/Ext Eval	RX Summ Transplant / Endocr
CS Tumor Size	RX summSystemic Surg Seq
CS Version 1st	SEER Record Number
CS Version Latest	SEER Summary Stage 1977
Date of Initial RX SEER - Month	SEER Summary Stage 2000
Date of Last Contact - Month	SEER Type of Follow-up
Date of Last Contact - Year	Sequence Number - Central
Day of Conclusive DX	Sex
Day of Multiple Tumors	Site Recode ICD-O-3 / WHO 2008
Derived AJCC 6th Stage	Spanish / Hispanic Origin
Derived AJCC 7th Stage	Tumor Marker 1
Diagnostic Confirmation	Tumor Marker 2
DSS2000S	Tumor Marker 3
EOD10 Extension	Type of Reporting Source
EOD10 Extension Prostate Path	Vital Status
EOD10 Lymph Node Involvement	Vital Status Recode
EOD10 Tumor Size	Year of Birth
Ethnicity Source	Year of Conclusive DX

Figure 1: A boxplot illustration. The ends of the vertical lines or "whiskers" indicate the minimum and maximum data values, unless outliers are present in which case the whiskers extend to a maximum of 1.5 times the interquartile range (IQR). Extreme outliers are the ones that falls 3 times IQR outside of the box boundary. Outliers are the ones that falls 1.5 times IQR outside of the box boundary.