GSR: Editing - CellCoal Simulator

You may request changes to this simulator by navigating to the Basic, Details, and Citations/Applications tabs. When you are finished, open the Submit tab. To return back to the simulator view, click CellCoal. Finally, please take note of the GSR simulator privacy policy.
CellCoal
CellCoal: Coalescent Simulation of Single-Cell Sequencing Samples
CellCoal simulates the somatic evolution of single-cells. CellCoal generates a coalescent genealogy for a sample of somatic cells –no recombination– obtained from a growing population, together with a another cell as outgroup, introduces mutations along this genealogy, and produces single-cell diploid genotypes (single-nucleotide variants or SNVs). CellCoal implements multiple mutations models (0/1, DNA, infinite and finite site models, deletion, copy-neutral LOH, 30 cancer signatures) and is able to generate read counts and genotype likelihoods considering allelic dropout, sequencing and amplification error, plus doublet cells.
somatic evolution, single-cell genomics, allele dropout, amplification error, coalescent genealogy, multiple mutations models, single-cell diploid genotypes
1.3.1
Oct. 9, 2019
April 4, 2022
https://github.com/dapogon/cellcoal

Attribute Tree Control

Step 1: Use the attribute tree to add new attributes or remove pre-selected attributes to describe the simulator.

Every sub-attribute is selected
Not all sub-attributes are selected
  • Target
    • Type of Simulated Data
      • Genotype at Genetic Markers
      • Diploid DNA Sequence
      • Haploid DNA Sequence
      • RNA
      • Gene Expression
      • Sex Chromosomes
      • Mitochondrial DNA
      • Protein Sequence
      • Sequencing Reads
      • Phenotype
      • Single-Cell Sequencing
      • Bulk Sequencing
      • Proteomics
      • Chromatin Conformation
    • Variations
      • Biallelic Marker
      • Multiallelic Marker
      • Single Nucleotide Variation
      • Amino acid variation
      • Microsatellite
      • Insertion and Deletion
      • CNV
      • Inversion and Rearrangement
      • Alternative Splicing
      • Missing Genotypes
      • Genotype or Sequencing Error
      • Ionization
      • Other
  • Simulation Method
    • Standard Coalescent
    • Exact Coalescent
    • Machine Learning
    • Forward-time
    • Resample Existing Data
    • Phylogenetic
    • Gene dropping
    • Neural network
    • Other
  • Input
    • Data Type
      • Allele Frequencies
      • Empirical
      • Ancestral Sequence
      • Saved simulation
      • Reference genome
      • Other
    • File format
      • Arlequin
      • CREATE
      • Fstat
      • GDA
      • Genepop
      • MIGRATE
      • MS
      • SAM or BAM
      • NEXUS
      • Phylip
      • STRUCTURE
      • XML
      • Tree Sequence
      • Program Specific
      • Other
  • Output
    • Data Type
      • Genotype or Sequence
      • Phenotypic Trait
      • Individual Relationship
      • Phylogenetic Tree
      • Demographic
      • Mutation
      • Methylation
      • Gene Expression
      • Protein Expression
      • Linkage Disequilibrium
      • Diversity Measures
      • Fitness
      • Sequencing Reads
        • Illumina
        • Roche 454
        • SOLiD
        • IonTorrent
        • PacBio
        • Nanopore
        • Other
      • Other
    • File Format
      • Arlequin
      • Fasta or Fastq
      • Fstat
      • Genepop
      • Linkage
      • MIGRATE
      • MS
      • PED
      • Phylip
      • NEXUS
      • STRUCTURE
      • VCF
      • SAM or BAM
      • Tree Sequence
      • Program Specific
      • Other
    • Sample Type
      • Random or Independent
      • Sibpairs, Trios and Nuclear Families
      • Extended or Complete Pedigrees
      • Case-control
      • Longitudinal
      • Other
  • Phenotype
    • Trait Type
      • Binary or Qualitative
      • Quantitative
      • Multiple
    • Determinants
      • Single Genetic Marker
      • Multiple Genetic Markers
      • Sex-linked
      • Gene-Gene Interaction
      • Environmental Factors
      • Gene-Environment Interaction
  • Evolutionary Features
    • Demographic
      • Population Size Changes
        • Constant Size
        • Exponential Growth or Decline
        • Logistic Growth
        • Bottleneck
        • Carrying Capacity
        • User Defined
      • Gene Flow
        • Stepping Stone Models
        • Island Models
        • Continent-Island Models
        • Sex or Age-Specific Migration Rates
        • Influenced by Environmental Factors
        • Admixed Population
        • User-defined Matrix
        • Other
      • Spatiality
        • Discrete Models
        • Continuous Models
        • Landscape Factors
    • Life Cycle
      • Discrete Generation Model
      • Age structured
      • Overlapping Generation
      • User-Defined transition matrices
    • Mating System
      • Random Mating
      • Monogamous
      • Polygamous
      • Haplodiploid
      • Selfing
      • Age- or Stage-Specific
      • Assortative or Disassortative
      • Other
    • Fecundity
      • Constant Number
      • Randomly Distributed
      • Individually Determined
      • Influenced by Environment
      • Other
    • Natural Selection
      • Determinant
        • Single-locus
        • Multi-locus
        • Codon-based
        • Fitness of Offspring
        • Phenotypic Trait
        • Environmental Factors
      • Models
        • Directional Selection
        • Balancing Selection
        • Multi-locus models
        • Epistasis
        • Random Fitness Effects
        • Disruptive
        • Phenotype Threshold
        • Frequency-Dependent
        • Other
    • Recombination
      • Uniform
      • Varying Recombination Rates
      • Gene Conversion Allowed
    • Mutation Models
      • Two-allele Mutation Model
      • Markov DNA Evolution Models
      • k-Allele Model
      • Infinite-allele Model
      • Infinite-sites Model
      • Stepwise Mutation Model
      • Codon and Amino Acid Models
      • Indels and Others
      • Heterogeneity among Sites
      • Others
    • Events Allowed
      • Population Merge and Split
      • Varying Demographic Features
      • Population Events
      • Varying Genetic Features
      • Change of Mating Systems
      • Other
    • Other
      • Phenogenetic
      • Polygenic background
  • Interface
    • Command-line
    • Graphical User Interface
    • Integrated Development Environment
    • Script-based
    • Web-based
  • Development
    • Tested Platforms
      • Windows
      • Mac OS X
      • Linux and Unix
      • Solaris
      • Others
    • Language
      • C or C++
      • Java
      • R
      • Python
      • Perl
      • Visual Basic
      • Other
    • License
      • GNU Public License
      • BSD
      • Creative Commons
      • MIT
      • Other
  • GSR Certification
    • Accessibility
    • Documentation
    • Application
    • Support

Summary of Proposed Changes

Step 2: Review list of proposed attribute addition(s) and subtraction(s).

To Add

    To Remove

      Can't Find the Attribute You Are Looking For?

      If you would like to propose an attribute that you cannot find in the tree above, or if you would like to add a clarification to one or more attributes for this simulator (e.g. a specific file format for attribute /Output/File Format/Other), please list them in the Additional Comment box of the Submit tab.

      You may add citations by pmid, add citations by direct entry, remove citations (using the recycling bin icon), and edit citations (using the rarely seen edit icon) that were originally entered by direct entry.

      Summary of Proposed Changes

      To Add

      To Remove

      Current Citations/Applications

      [Pubmed ID: 32027371], Posada D, CellCoal: Coalescent Simulation of Single-Cell Sequencing Samples., Mol Biol Evol, 05-01-2020, https://www.ncbi.nlm.nih.gov/pubmed/?term=32027371,Primary Citation
      [Pubmed ID: 36451239], Kang S, Borgsmüller N, Valecha M, Kuipers J, Alves JM, Prado-López S, Chantada D, Beerenwinkel N, Posada D, Szczurek E, SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data., Genome Biol, 11-30-2022, https://www.ncbi.nlm.nih.gov/pubmed/?term=36451239,, Application
      [Pubmed ID: 36459515], Gao Y, Gaither J, Chifman J, Kubatko L, A phylogenetic approach to inferring the order in which mutations arise during cancer progression., PLoS Comput Biol, 12-02-2022, https://www.ncbi.nlm.nih.gov/pubmed/?term=36459515,, Application
      This email will never be published. This email is used only for verification and communication purposes.
      Please inform the GSR team here if you would like to see an attribute added to the attribute tree (or any other changes to the simulator description system as it exists).