GSR: Editing - GeneSPIDER Simulator

You may request changes to this simulator by navigating to the Basic, Details, and Citations/Applications tabs. When you are finished, open the Submit tab. To return back to the simulator view, click GeneSPIDER. Finally, please take note of the GSR simulator privacy policy.
GeneSPIDER
Gene regulatory network inference benchmarking with controlled network and data properties
Inference of gene regulatory networks (GRNs) is a central goal in systems biology. It is therefore important to evaluate the accuracy of GRN inference methods in the light of network and data properties. Although several packages are available for modelling, simulate, and analyse GRN inference, they offer limited control of network topology together with system dynamics, experimental design, data properties, and noise characteristics. Independent control of these properties in simulations is key to drawing conclusions about which inference method to use in a given condition and what performance to expect from it, as well as to obtain properties representative of real biological systems.
Gene regulatory network inference and analysis
1.11
11-20-2015
04-18-2017
https://bitbucket.org/sonnhammergrni/genespider/src/master/
None

Attribute Tree Control

Step 1: Use the attribute tree to add new attributes or remove pre-selected attributes to describe the simulator.

Every sub-attribute is selected
Not all sub-attributes are selected
  • Target
    • Type of Simulated Data
      • Genotype at Genetic Markers
      • Diploid DNA Sequence
      • Haploid DNA Sequence
      • RNA
      • Sex Chromosomes
      • Mitochondrial DNA
      • Protein Sequence
      • Sequencing Reads
    • Variations
      • Biallelic Marker
      • Multiallelic Marker
      • Single Nucleotide Variation
      • Amino acid variation
      • Microsatellite
      • Insertion and Deletion
      • CNV
      • Inversion and Rearrangement
      • Alternative Splicing
      • Missing Genotypes
      • Genotype or Sequencing Error
      • Other
  • Simulation Method
    • Standard Coalescent
    • Exact Coalescent
    • Forward-time
    • Resample Existing Data
    • Phylogenetic
    • Gene dropping
    • Other
  • Input
    • Data Type
      • Allele Frequencies
      • Empirical
      • Ancestral Sequence
      • Saved simulation
      • Reference genome
      • Other
    • File format
      • Arlequin
      • CREATE
      • Fstat
      • GDA
      • Genepop
      • MIGRATE
      • MS
      • NEXUS
      • Phylip
      • STRUCTURE
      • XML
      • Tree Sequence
      • Program Specific
      • Other
  • Output
    • Data Type
      • Genotype or Sequence
      • Phenotypic Trait
      • Individual Relationship
      • Demographic
      • Mutation
      • Methylation
      • Gene Expression
      • Protein Expression
      • Linkage Disequilibrium
      • Diversity Measures
      • Fitness
      • Sequencing Reads
        • Illumina
        • Roche 454
        • SOLiD
        • IonTorrent
        • PacBio
        • Nanopore
        • Other
      • Other
    • File Format
      • Arlequin
      • Fasta or Fastq
      • Fstat
      • Genepop
      • Linkage
      • MIGRATE
      • MS
      • PED
      • Phylip
      • NEXUS
      • STRUCTURE
      • VCF
      • SAM or BAM
      • Tree Sequence
      • Program Specific
      • Other
    • Sample Type
      • Random or Independent
      • Sibpairs, Trios and Nuclear Families
      • Extended or Complete Pedigrees
      • Case-control
      • Longitudinal
      • Other
  • Phenotype
    • Trait Type
      • Binary or Qualitative
      • Quantitative
      • Multiple
    • Determinants
      • Single Genetic Marker
      • Multiple Genetic Markers
      • Sex-linked
      • Gene-Gene Interaction
      • Environmental Factors
      • Gene-Environment Interaction
  • Evolutionary Features
    • Demographic
      • Population Size Changes
        • Constant Size
        • Exponential Growth or Decline
        • Logistic Growth
        • Bottleneck
        • Carrying Capacity
        • User Defined
      • Gene Flow
        • Stepping Stone Models
        • Island Models
        • Continent-Island Models
        • Sex or Age-Specific Migration Rates
        • Influenced by Environmental Factors
        • Admixed Population
        • User-defined Matrix
        • Other
      • Spatiality
        • Discrete Models
        • Continuous Models
        • Landscape Factors
    • Life Cycle
      • Discrete Generation Model
      • Age structured
      • Overlapping Generation
      • User-Defined transition matrices
    • Mating System
      • Random Mating
      • Monogamous
      • Polygamous
      • Haplodiploid
      • Selfing
      • Age- or Stage-Specific
      • Assortative or Disassortative
      • Other
    • Fecundity
      • Constant Number
      • Randomly Distributed
      • Individually Determined
      • Influenced by Environment
      • Other
    • Natural Selection
      • Determinant
        • Single-locus
        • Multi-locus
        • Codon-based
        • Fitness of Offspring
        • Phenotypic Trait
        • Environmental Factors
      • Models
        • Directional Selection
        • Balancing Selection
        • Multi-locus models
        • Epistasis
        • Random Fitness Effects
        • Disruptive
        • Phenotype Threshold
        • Frequency-Dependent
        • Other
    • Recombination
      • Uniform
      • Varying Recombination Rates
      • Gene Conversion Allowed
    • Mutation Models
      • Two-allele Mutation Model
      • Markov DNA Evolution Models
      • k-Allele Model
      • Infinite-allele Model
      • Infinite-sites Model
      • Stepwise Mutation Model
      • Codon and Amino Acid Models
      • Indels and Others
      • Heterogeneity among Sites
      • Others
    • Events Allowed
      • Population Merge and Split
      • Varying Demographic Features
      • Population Events
      • Varying Genetic Features
      • Change of Mating Systems
      • Other
    • Other
      • Phenogenetic
      • Polygenic background
  • Interface
    • Command-line
    • Graphical User Interface
    • Integrated Development Environment
    • Script-based
    • Web-based
  • Development
    • Tested Platforms
      • Windows
      • Mac OS X
      • Linux and Unix
      • Solaris
      • Others
    • Language
      • C or C++
      • Java
      • R
      • Python
      • Perl
      • Visual Basic
      • Other
    • License
      • GNU Public License
      • BSD
      • Creative Commons
      • MIT
      • Other
  • GSR Certification
    • Accessibility
    • Documentation
    • Application
    • Support

Summary of Proposed Changes

Step 2: Review list of proposed attribute addition(s) and subtraction(s).

To Add

    To Remove

      Can't Find the Attribute You Are Looking For?

      If you would like to propose an attribute that you cannot find in the tree above, or if you would like to add a clarification to one or more attributes for this simulator (e.g. a specific file format for attribute /Output/File Format/Other), please list them in the Additional Comment box of the Submit tab.

      You may add citations by pmid, add citations by direct entry, remove citations (using the recycling bin icon), and edit citations (using the rarely seen edit icon) that were originally entered by direct entry.

      Summary of Proposed Changes

      To Add

      To Remove

      Current Citations/Applications

      [Pubmed ID: 28485748], Tjärnberg A, Morgan DC, Studham M, Nordling TEM, Sonnhammer ELL, GeneSPIDER - gene regulatory network inference benchmarking with controlled network and data properties., Mol Biosyst, 06-27-2017, https://www.ncbi.nlm.nih.gov/pubmed/?term=28485748,Primary Citation
      [Pubmed ID: 30547407], Jurman G, Filosi M, Visintainer R, Riccadonna S, Furlanello C, Stability in GRN Inference., Methods Mol Biol, 01-01-2019, https://www.ncbi.nlm.nih.gov/pubmed/?term=30547407,, Application
      [Pubmed ID: 30932143], Muldoon JJ, Yu JS, Fassia MK, Bagheri N, Network inference performance complexity: a consequence of topological, experimental and algorithmic determinants., Bioinformatics, 09-15-2019, https://www.ncbi.nlm.nih.gov/pubmed/?term=30932143,, Application
      [Pubmed ID: 31904818], Magnusson R, Gustafsson M, LiPLike: towards gene regulatory network predictions of high certainty., Bioinformatics, 04-15-2020, https://www.ncbi.nlm.nih.gov/pubmed/?term=31904818,, Application
      [Pubmed ID: 32843692], Morgan D, Studham M, Tjärnberg A, Weishaupt H, Swartling FJ, Nordling TEM, Sonnhammer ELL, Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms., Sci Rep, 08-25-2020, https://www.ncbi.nlm.nih.gov/pubmed/?term=32843692,, Application
      [Pubmed ID: 33168813], Seçilmiş D, Hillerton T, Morgan D, Tjärnberg A, Nelander S, Nordling TEM, Sonnhammer ELL, Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data., NPJ Syst Biol Appl, 11-09-2020, https://www.ncbi.nlm.nih.gov/pubmed/?term=33168813,, Application
      This email will never be published. This email is used only for verification and communication purposes.
      Please inform the GSR team here if you would like to see an attribute added to the attribute tree (or any other changes to the simulator description system as it exists).